24 research outputs found

    Wood pastures in Central Slovakia – collapse of a traditional land use form

    Get PDF
    Wood pastures with pollard trees have been a common land-use type across Europe. The trees, besides having positive environmental effects on livestock, served as important source of fodder and wood. Pollarded wood pastures were hence a multifunctional, state of the art, highly productive farming ecosystems. Despite relatively drastic treatment, the trees regenerated quite well, and grew to relatively high-age. When pollarding lapses for longer period the wood pasture may confusingly resemble an ancient forest. Using aerial photographs of Slovakia from 1949–1950 we have identified 950 individual wood pasture localities with total area of 265.5 km2 within the Self-Governing Region of Banská Bystrica. Majority of identified wood pasture habitats were actively managed in the first half of the 20th century. Nowadays, less than 2.5% has preserved its original structure, the rest has been abandoned (92.8%) or actively transformed into different land-use form. We conducted a field survey in order to identify historical pollarding within the Gavurky protected area, one of the last and best preserved wood pastures in Slovakia. By evaluating habitual features, we were able to confirm historical pollarding for more than 80% of present veteran trees. We provide framework for identification of pollarding in historical wood pasture localities, applicable in the conditions of long-term management cessation

    The burden of injury in Central, Eastern, and Western European sub-region : a systematic analysis from the Global Burden of Disease 2019 Study

    Get PDF
    Background Injury remains a major concern to public health in the European region. Previous iterations of the Global Burden of Disease (GBD) study showed wide variation in injury death and disability adjusted life year (DALY) rates across Europe, indicating injury inequality gaps between sub-regions and countries. The objectives of this study were to: 1) compare GBD 2019 estimates on injury mortality and DALYs across European sub-regions and countries by cause-of-injury category and sex; 2) examine changes in injury DALY rates over a 20 year-period by cause-of-injury category, sub-region and country; and 3) assess inequalities in injury mortality and DALY rates across the countries. Methods We performed a secondary database descriptive study using the GBD 2019 results on injuries in 44 European countries from 2000 to 2019. Inequality in DALY rates between these countries was assessed by calculating the DALY rate ratio between the highest-ranking country and lowest-ranking country in each year. Results In 2019, in Eastern Europe 80 [95% uncertainty interval (UI): 71 to 89] people per 100,000 died from injuries; twice as high compared to Central Europe (38 injury deaths per 100,000; 95% UI 34 to 42) and three times as high compared to Western Europe (27 injury deaths per 100,000; 95%UI 25 to 28). The injury DALY rates showed less pronounced differences between Eastern (5129 DALYs per 100,000; 95% UI: 4547 to 5864), Central (2940 DALYs per 100,000; 95% UI: 2452 to 3546) and Western Europe (1782 DALYs per 100,000; 95% UI: 1523 to 2115). Injury DALY rate was lowest in Italy (1489 DALYs per 100,000) and highest in Ukraine (5553 DALYs per 100,000). The difference in injury DALY rates by country was larger for males compared to females. The DALY rate ratio was highest in 2005, with DALY rate in the lowest-ranking country (Russian Federation) 6.0 times higher compared to the highest-ranking country (Malta). After 2005, the DALY rate ratio between the lowest- and the highest-ranking country gradually decreased to 3.7 in 2019. Conclusions Injury mortality and DALY rates were highest in Eastern Europe and lowest in Western Europe, although differences in injury DALY rates declined rapidly, particularly in the past decade. The injury DALY rate ratio of highest- and lowest-ranking country declined from 2005 onwards, indicating declining inequalities in injuries between European countries.Peer reviewe

    Internet of Things in Agricultural Innovation and Security

    Get PDF
    The agricultural Internet of Things (Ag-IoT) paradigm has tremendous potential in transparent integration of underground soil sensing, farm machinery, and sensor-guided irrigation systems with the complex social network of growers, agronomists, crop consultants, and advisors. The aim of the IoT in agricultural innovation and security chapter is to present agricultural IoT research and paradigm to promote sustainable production of safe, healthy, and profitable crop and animal agricultural products. This chapter covers the IoT platform to test optimized management strategies, engage farmer and industry groups, and investigate new and traditional technology drivers that will enhance resilience of the farmers to the socio-environmental changes. A review of state-of-the-art communication architectures and underlying sensing technologies and communication mechanisms is presented with coverage of recent advances in the theory and applications of wireless underground communications. Major challenges in Ag-IoT design and implementation are also discussed

    Assessing alternative methods for acquiring and processing digital elevation data

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The Spatial Distribution of Photovoltaic Power Plants in Relation to Solar Resource Potential: The Case of the Czech Republic and Slovakia

    No full text
    Over the last few years, many European countries experienced a rapid growth of photovoltaic (PV) power plants. For example, more than 20, 000 new PV power plants were built in the Czech Republic. The high spatial and temporal variability of the solar resource and subsequent PV power plant production, poses new challenges for the reliability and predictability of the power grid system. In this paper, we analyse the most recent data on PV power plants built in the Czech Republic and Slovakia, with a focus on the spatial distribution of these installations. We have found that these power plants scarcely follow the solar resource potential and, apparently, other factors affect decisions for their location. Recent changes in the support schemes for solar applications also influence these patterns, with new installations mostly confined to built-up areas. These changes will require new tools to assess the appropriate locations of PV systems

    Geomorphometric analysis of cave ceiling channels mapped with 3-D terrestrial laser scanning

    Get PDF
    The change of hydrological conditions during the evolution of caves in carbonate rocks often results in a complex subterranean geomorphology, which comprises specific landforms such as ceiling channels, anastomosing half tubes, or speleothems organized vertically in different levels. Studying such complex environments traditionally requires tedious mapping; however, this is being replaced with terrestrial laser scanning technology. Laser scanning overcomes the problem of reaching high ceilings, providing new options to map underground landscapes with unprecedented level of detail and accuracy. The acquired point cloud can be handled conveniently with dedicated software, but applying traditional geomorphometry to analyse the cave surface is limited. This is because geomorphometry has been focused on parameterization and analysis of surficial terrain. The theoretical and methodological concept has been based on two-dimensional (2-D) scalar fields, which are sufficient for most cases of the surficial terrain. The terrain surface is modelled with a bivariate function of altitude (elevation) and represented by a raster digital elevation model. However, the cave is a 3-D entity; therefore, a different approach is required for geomorphometric analysis. In this paper, we demonstrate the benefits of high-resolution cave mapping and 3-D modelling to better understand the palaeohydrography of the Domica cave in Slovakia. This methodological approach adopted traditional geomorphometric methods in a unique manner and also new methods used in 3-D computer graphics, which can be applied to study other 3-D geomorphological forms

    Combined Use of Terrestrial Laser Scanning and UAV Photogrammetry in Mapping Alpine Terrain

    No full text
    Airborne and terrestrial laser scanning and close-range photogrammetry are frequently used for very high-resolution mapping of land surface. These techniques require a good strategy of mapping to provide full visibility of all areas otherwise the resulting data will contain areas with no data (data shadows). Especially, deglaciated rugged alpine terrain with abundant large boulders, vertical rock faces and polished roche-moutones surfaces complicated by poor accessibility for terrestrial mapping are still a challenge. In this paper, we present a novel methodological approach based on a combined use of terrestrial laser scanning (TLS) and close-range photogrammetry from an unmanned aerial vehicle (UAV) for generating a high-resolution point cloud and digital elevation model (DEM) of a complex alpine terrain. The approach is demonstrated using a small study area in the upper part of a deglaciated valley in the Tatry Mountains, Slovakia. The more accurate TLS point cloud was supplemented by the UAV point cloud in areas with insufficient TLS data coverage. The accuracy of the iterative closest point adjustment of the UAV and TLS point clouds was in the order of several centimeters but standard deviation of the mutual orientation of TLS scans was in the order of millimeters. The generated high-resolution DEM was compared to SRTM DEM, TanDEM-X and national DMR3 DEM products confirming an excellent applicability in a wide range of geomorphologic applications

    Capacity of photovoltaic power plants in the Czech Republic

    No full text
    <p>Over the last five years several European countries have experienced a rapid development of photovoltaic power plants. In the Czech Republic more than 20,000 new photovoltaic power plants have been built with the total nominal power capacity of 2100 MWp. The spatial distribution of these installations is very uneven. Built-up areas are dominated by a large number of small installations while large installations (over 1 MWp) are usually located in agricultural areas. To express a spatial distribution of these installations we have used a synthetic approach combining the spatial density of installations with the power plant capacities. The resulting map in the scale of 1:750,000 shows a continuous distribution of the installed power capacity.</p
    corecore